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ABSTRACT: The Adomian decomposition method (ADM) is a creative and effective method for exact solution of functional 

equations of various kinds.  Adomian decomposition method solves wide class of linear and non-linear, ordinary or partial 

differential equations. This paper presents the Adomian decomposition method for the solution of nonlinear boundary value 

problem using Robin boundary conditions. In this approach, the solution is found in the form of a convergent power series with 

easily computed components. To show the efficiency of the method, numerical results and graphical representation of results 

are presented and compared with exact solution. 
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1. INTRODUCTION 
We apply ADM for solving nonlinear second-order 

differential equation that is boundary value problems (BVPs) 

using Robin boundary conditions [1]. For the solution of 

Robin BVPs, Some conditions include the set of Dirichlet 

boundary conditions as well as mixed sets of Robin and 

Neumann, Robin and Dirichlet, Neumann and Dirichlet, 

Robin boundary and Neumann conditions, Dirichlet and 

Robin, Dirichlet and Neumann [2-3]. There should be an 

estimation of split series in every subdomain with the help of 

famous latest recursion method for nonlinear BVPs by our 

innovative latest recursion method. For Initial Value 

Problems (IVPs), the Sub-solutions are united by application 

the form of connection at the inner boundary position in 

equivalence to the multistage ADM [6]. There is an 

introduction of Multistage ADM, which can simply behave 

nonlinear problem while the unique sequence diverges above 

the specific field [7-9]. A further mean of the multistage 

ADM for BVPs is to resolve nonlinear Neumann BVPs 

relying upon the solution theory of change the unique BVP 

into two sub-BVPs, where each is subject to a mixed set of 

Dirichlet and Neumann boundary conditions [5]. The ADM is 

considered organized system for useful solution of linear or 

nonlinear and deterministic or stochastic operator problems 

simultaneously with ordinary differential equations, partial 

differential equations, integro–differential equations, integral 

equations etc [10-12]. 

 
2. MATERIAL AND METHODS 
2.1. Adomian Decomposition Method with robin 

boundary condition  

Let the common nonlinear deterministic differential problem 

in Adomian’s operator-theoretic type be 

              (1)  

where g is the system input and u is the system output, and 

where L is the linear operator which frequently is at present 

the highest order differential operator, R is the linear rest 

operator, and N is the nonlinear operator 

              (2) 

Since L has been understood to be invertible, relate the 

converse linear operator    equally side of eq. (2) 

                        
By the definition of integral operator,  

          

Where   identically satisfies      

                  

for             where the            be the initial and 

boundary value operator, correspondingly for IVPs;  the set 

of initial conditions 

     ( )      
  

  
( )  

Furthermore in favor of Dirichlet BVPs, the set of Dirichlet 

boundary conditions 

     (  )         (  )   
We have 

                       (3) 

y the homogenous term  , taking the operator L, to both sides 

of eq. (3), we get 

                     

Or 

                

We describe the calculation of the a priori familiarconditions 

as           
That is the corresponding nonlinear Volterra integral equation 

designed used for the solution for either IVPs or BVPs 

depending on how we estimate  

  ∑                ∑   
 
   

 
     

Correspondingly, wherever the Adomian polynomials are 

reliant leading the solution components from   ( ) through 

  ( )  inclusively,   ( )    (  ( )     ( ))  
f is understood to be analytic, as 

  ( )  
 

  

  

     (   (   ))       

Where λ is a constant. 

 (   )  ∑     ( )  
     

 (   (   ))  ∑     ( ) 
     

And 

    ( )  
  

     (   )       

Here the first several Adomian polynomials are 

  ( )   (    ( ))  
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 (    ( ))  

  ( )    ( )
 

   
 (    ( )  

  
 ( )
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We observe that 

    (    )        ∑   
  ( )(    )          

     

so the Adomian polynomials rapidly and to high instructions 

as 

  
                        

  
  

 

 
∑ (   )          

                            
     

The Adomian decomposition sequence used for the solution 

u(x) as well as the sequence of Adomian polynomials adapted 

in the direction of the nonlinearity Nu(x) as, we get 

∑          ∑       ∑   
 
   

 
   

 
     

The solution components   ( )can be calculated  ( ), using 

the standard Adomian recursion method 

  ( )   ( )     ( )                        

2.2. Constitutive Equations 

Suppose a nonlinear differential equation of second order of 

the type 
  

    ( )   ( ( ))                (4) 

Through Robin boundary form 

  ( )     ( )       (5) 

  ( )     ( )       (6) 

where f (u(x)is systematic nonlinearity and p, q, r, s assure 

        (   )       (7) 

If                are not all zeroes,    are not all 

zeroes, and     are not all zeroes, and then we have    
     (   )    

We will take care of more common cases for values of 

         that is not inadequate by  

Eq. (3.7), when        i.e. the Neumann boundary forms 

We revise Eq. (3.4) in Adomian’s operator-theoretic type 

                     (8) 

Where  ( )  
  

   
( )is the linear differential operator to be 

on its head and Nu=f (u(x)). 

We think the exact definite integral operators     
   which is 

definite as 

    
   ∫ ∫ ( )       

 

 

 

 
  

Applying the operator     
   of Eq. (3.8) yield 

 ( )   ( )  (   )  ( )      
      (9) 

by eq. (9), evaluate u(x) at x=b to get 

 ( )   ( )  (   )  ( )       
         (10) 

where 

     
  ( )     ∫ ∫ ( )     

 

 

 

 
  

Differentiating (9) and then evaluating   ( )      give in 

  ( )    ( )  ∫     
 

 
    (11) 

Substitute eqn’s (11) and (12) into Eq. (9), we acquire 

  ( )     ( )     

   ( )  (   )  ( )  [    
        ]      ( )  

∫         
 

 
  

  ( )  ( (   )   )  ( )          
         

 ∫     
 

 
     (12) 

Eqns. (5) and (12) represent a scheme of two linearly 

independent equations in the two remain undecided 

coefficients  ( )      ( )  

  |
  

  (   )   |          (   )  

This is nonzero by our statement (7) 

We have resulting ( )       ( ) in conditions of the 

particular significance of the method 

constraint                       

  ( )     ( )    

  ( )  ( (   )   )  ( )          
         

 ∫     
 

 
  

 ( )  
 

 
|

  

        
          ∫     

 

 
( (   )   )|  

 ( )  
 

 
   (   )               

         

  ∫      
 

 
     (13) 

  ( )  
 

 
|
  

         
          ∫     

 

 

|  

  ( )  
 

 
           

           ∫         
 

 
(14) 

Substituting Eqns (13) and (14) into Eq. (10) yield 

 ( )  
 

 
         (   )    (   )      

     
 (   )  

 
       

          ∫      
 

 
  

This now is free of any uncertain coefficients after that relate 

the decomposition of the solution u(x) and the nonlinearity 

Nu(x), 

 ( )  ∑   ( )             ( )  ∑   ( ) 
   

 
     

Respectively, wherever the  ( ) are the Adomian 

polynomials 

   
 

 
         (   )    (   )   

  ( )      
       

 (   )  

 
       

           

 ∫                
 

 
  

The mth-stage estimationfind by the ADM is  

  ( )  ∑   ( )   
     

We have ensure that each one approximation   ( )       
accurately assure the boundary conditions (5) and (6) by our 

designed. 

We insert     points in the particular interval        
                        
Let the principles of the solution at the innerposition are 

 (  )                      which represent   
   undecided coefficients. 

The left hand subinterval         we solve the nonlinear BVP 

through a Dirichlet boundary and a mixed set of Robin 

conditions 
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  ( )     ( )         (  )     

And denote the mth-stage approximation as 

  
( )( )    

( )(    )  ∑   
( )( ) 

     

On the interior subintervals                         we 

solve the nonlinear BVP with a mixed set of Robin and 

Dirichlet boundary conditions 

                       

 (    )             (  )     

and denote the mth-stage approximation as 

  
( )( )    

( )(         )  ∑   
( )( )              

   

           

On the right hand subinterval          
                

 (    )          ( )     ( )    

and denote the mth-stage approximation as 

  
( )( )    

( )(      )  ∑   
( )( )   

     

Matching the N approximations   
( )( )            

   
( )

  
(  )  

   
(   )

  
(  )                   (15) 

solve the     coefficients               If, as m 

increases, there exist solutions for the coefficients 

             

We indicate by       the approximate value of    obtained 

by matching   
( )( )            according to Eqs   (3.15).  

Combining 

  
( )(        )   

( )(               )     
( )

(          ) 
We can employ the boxcar function to state the mth-stage 

solution approximant as 

  ( )  ∑   
( )( ) ∏(         )

 
     

so the boxcar function can be describe as 

∏(     )   (   )   (   )  

And where 

 (   )  *
                  
                   

 

Case-1 

Boundary conditions of the Dirichlet 

 ( )      ( )       
Correspond to the case of              in Eqs. (3.5) 

and (3.6). Hence we have        we get 

 ( )  
 (   )  (   )

   
     

    ( )  
   

   
     

    ( )      

Case-2 

Dirichlet boundary and the mixed set of Robin conditions 

  ( )     ( )      ( )    

corresponds to the case of        . Hence we have 

   (   )    we have 

 ( )  
 (   )   (   )   

 (   )  
     

    ( )  
 (   )  

 (   )  
     

    ( )      

Case-3 

Neumann boundary and the mixed set of Robin conditions 

  ( )     ( )       ( )    

correspond to the case of           Hence we have   
  we have 

 ( )   (   )  
    

 
     

     
 (   )  

 
∫       

 

 
  

Case-4 

Robin boundary and the mixed set of Dirichlet conditions 

 ( )       ( )     ( )      

Corresponds to the case of        , Hence we have 

   (   )     

 ( )  
 (   )   (   )   

 (   )  
     

    ( )  
 (   )  

 (   )  
     

    ( )      

Case-5 

Robin boundary and the mixed set of Neumann conditions 

  ( )       ( )     ( )     
Corresponds to the case of        . Hence we have 

     

 ( )   (   )  
    

 
     

     
 (   )  

 
∫     

 

 
  

Case-6 

Neumann boundary and the mixed set of Dirichlet conditions 

 ( )       ( )     
Corresponds to the case of           , 

corresponding Volterra integral equation is  

 ( )     (   )      
    ( )     

Case-7 

Dirichlet boundary and the mixed set of Neumann conditions 

  ( )      ( )    

Corresponds to the case of            , equivalent 

nonlinear Volterra equation is 

 ( )     (   )      
    ( ) 

2.3. Inverse Linear Operators 

Suppose the inverse linear operators 

    
  ( )  ∫ ∫ ( )       

 

 

 

 
  

    
  ( )  ∫ ∫ ( )     

 

 

 

 
  

And 

    
  ( )  ∫ ∫ ( )      

 

 

 

 
  

Relate the operator    
  ( ),we include 

   ( )  (   )  ( )      
      

We obtain 

 ( )  
 

 
         (   )    (   )      

     
 (   )  

 
       

          ∫       
 

 
  

which we obtain the customized recursion system 

  ( )  
 

 
         (   )    (   )   

  ( )      
       

 (   )  

 
       

            ∫             
 

 
  

Applying the operator     
  ( ) to Eq. (8) we include 

   ( )  (   )  ( )      
      

Letting x=b, we have 

 ( )   ( )  (   )  ( )       
         

Differentiating,and letting x=a, we get 

  ( )    ( )  ∫       
 

 
  

Substituting the equations into the boundary conditions (5), 

(6) we get 

  ( )     ( )     ∫      
 

 
  

  ( )  (   (   ))  ( )          
         

Solving for u (a) and   ( ) 

After that introduce their results  

 ( )  
 

 
         (   )    (   )      

     
  (   )   

 
     

         
     (   )

 
∫      

 

 
  

we get the customized recursion system as 

  ( )  
 

 
         (   )    (   )   
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 ( (   )   ) ∫                    
 

 
  

Applying the operator     
  ( ) to Eq. (8), we contain 

   ( )  (   )  ( )      
      

By a related process as for operator     
  ( )  we get this 

 ( )  
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  (   )   
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the customized recursion system equivalent to  

  ( )  
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 ( (   )   ) ∫                   
 

 
  

We get to the first components in the over recursion system 

are the equal, and with the exchanging           
            
We denote 

    ( )  ∫        

    ( )  ∫     ( )    

we have 

  ( )      ( )      ( )      ( )(   )  
 

 
 (  (  

 )    ) (    ( )      ( )      ( )(   )  

(  (   )    )  (    ( )      ( ))+  

we enclose 

 ̅ ( )      ( )      ( )      ( )(   )  
 

 
   (  

 )    ) (    ( )      ( )      ( )(   ))  

(  (   )    )  (    ( )      ( ))   
We have the identity   ( )   ̅ ( )    

 

3. Numerical Illustrations 
Example-1: Let the variable coefficients linear BVP with 

Robin boundary form be  

    
 

   
  

 

   
               

 ( )     ( )            ( )     ( )       
Solution: 

The exact solution of the BVP is   ( )     and here we 

have                                
               Thus  

 ( )  
 

 
      (    )  (   )     

         

(    ) ∫           
    

 

 
  

 Nu degenerates to the sum of linear terms    
 

   
  

 

   
     the Adomian polynomials are 

   
 

   
   

 

   
  

                

From the recursion scheme, we have 

  ( )  
 

 
      (    )    

  ( )  
 

 
  (   )     

           (    ) ∫         
 

 

    
            

The solution components are computed as 
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    (    )  

     ( )

  
   

The maximal error constraint 

            |  ( )    ( )|  
Table-1: The maximal error constraint                       

N 1 2 3 4 5 6 

    1.93842 1.41912 0.985009 0.677592 0.465683 0.320021 

N 7 8 9 10 11 12 

    0.21992 0.15113 0.103857 0.0713709 0.0490464 0.0337049 

Example-2: Solve the following BVP with Robin boundary 

condition 

    
  

 
(      (  ) )                   

 ( )     ( )       ( )     ( )  
 

 
    

 

 
  

Solution: 

The exact solution is   ( )     
   

 
   for this BVP we have  

                
 

 
    

 

 
             

               

 ( )  
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)  

 

 
    
     

   

  
     

         
   

  
∫                

 

 
  

Where          (  )  

  The nonlinearity Nu as   ( )  ∑   ( )       ( )   
   

∑   ( ) 
    

Where the Adomian polynomials are 

          (  
 )   

                
   

  

           
            (  

 )     
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By the parameterized recursion scheme 
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∫                  

 

 
  

Table-2: The maximal error parameter                        
N 2 3 4 5 6 7 

    0.0640962 0.086546 0.0222792 0.00933165 0.00405274 0.00342178 

N 8 9 10 11 12 13 

    0.00277756 0.00190359 0.00142094 0.00108823 0.00083530 0.00064324 

N 14 15 16 17 18 19 

    0.000502041 0.000397089 0.000315939 0.000252689 0.000203294 0.000164427 

Example-3: Solve the following BVP with Robin boundary 

condition 

                    

  ( )           ( )  
 

 
  

Solution: 

The exact solution of BVP is   ( )     (   ) 

We have      

                  

  ( )      (   )     
since 

                
      

From which we develop the modified recursion system 

            
         

                  

Where the Adomian polynomials            are 

          

            

            
            

   
 

 
      

 

 
         

    

 
 

 

 
         

   
 

 
      

 

  
      

 

  
         

 

 
         

 

 
         

     

  
 

 

 
       

 

 
       

 

 
             

where we indicate the nth-stage solution estimate 

  
( )(   )  ∑   

   
    

                    

 (   )       ( )  
 

 
  

from 

    
 

 
(     )        

       

And the modified recursion scheme 

     
 

 
(     )  

         
                 

We get the calculated solution are 

   
 

 
  

 

 
     

 

 
             

 

 
      

             
  

 
    

 

 
                 

  
 

 
      

     

 
             

 

 
              …   

where we indicate the nth-stage solution 

estimation   
( )(   )  ∑       

   
   Solve the corresponding 

equation for the instability 

 
   

( )
(   )

  
        

   
( )

(   )

  
        

 The corresponding nth-stage approximation as 

  ( )  

  
( )

(       )∏(       )    
( )

(       )∏(       )  

The maximal error parameters              |  ( )  
  ( )| are solved and given in table  
Table-3: The maximal error parameter     

n 1 2 3 4 

    1.07741 0.129275 0.0526345 0.0161081 

n 5 6 7 8 

    0.00573991 0.00199712 0.000709397 0.000250784 

Table-4: The values of                       
n 2 3 4 5 6 

      0.459188 0.389312 0.410025 0.403754 0.406114 

n 7 8 9 10  

      0.405198 0.405577 0.405417 0.405486  

Table-5: The maximal error parameter       
n 2 3 4 5 6 

    0.05898 0.0184545 0.00527023 0.00199138 0.00075682 

n 7 8 9 10  

    0.000311709 0.000130807 0.0000567361 0.0000250119  

 

4. CONCLUSION  
Adomian decomposition method has been known to be a 

powerful device for solving many functional equations as 

algebraic equations, ordinary and partial differential 

equations, integral equations and so on. Here we used this 

method for solving nonlinear BVP. It is demonstrated that 

this method has the ability of solving systems of both linear 

and non-linear differential equations. In above problems, 

there was a nonlinear system and we derived the exact 

solutions. For non-linear systems, we usually derive a very 

good approximation to the solutions with the Robin boundary 

conditions.  It is also important that the Adomian 

decomposition method does not require discretization of the 

variables. It is not affected by computation round errors and 

one is not faced with necessity of large computer memory 

and time. Comparing the results with exact solutions, the 

Adomian decomposition method was clearly reliable 

techniques. It is important that this method unlike the most 

numerical techniques provides a closed form of the solution. 
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